Пресс-релизы // » Добавить пресс-релиз

В ТГУ неожиданно получили стишовит

«Космический» сверхплотный минерал получился в обычных условиях окружающей среды. Аморфные наночастицы кремнезёма при плазменно-электролитическом оксидировании (ПЭО) кратно повысили свойства защитного слоя на алюминиевом сплаве и превратились в сверхплотные твёрдые частицы стишовита. Для объяснения и прогнозирования его образования учёными России и Израиля была разработана новая количественная теория ударного взаимодействия наночастиц c оксидным слоем.
Плазменно-электролитическое оксидирование (ПЭО) – современная технология электрохимической обработки сплавов на основе алюминия, магния и титана, позволяющая создавать на поверхности изделий защитный керамический оксидный слой. Такой слой нельзя назвать в полном смысле покрытием, поскольку в его формировании участвует как сам обрабатываемый материал, так и вещества из электролита. Такое «покрытие» может иметь многократно более высокие механические, теплозащитные и антикоррозионные свойства, чем основной сплав, и защищать его от повреждений при работе в экстремальных условиях. Технологию отличают высокая экологичность и простота организации процесса. Из-за сочетания хороших механических свойств и малой плотности алюминиевые и магниевые сплавы широко используют в машиностроении, в том числе авиа- и автомобилестроении, а также в судостроении. Однако их поверхность для многих задач оказывается недостаточно износо- и коррозионностойкой. ПЭО позволяет решить большой круг задач по обеспечению необходимых свойств поверхности лёгких сплавов, но часто требуются ещё более высокие свойства для работы изделий в агрессивных средах и в экстремальных условиях изнашивания. Также остаётся проблемой невысокая производительность ПЭО.
Международный коллектив учёных из Тольяттинского государственного университета (ТГУ) под руководством профессора, главного научного сотрудника, доктора физико-математических наук Михаила Криштала при участии ведущего научного сотрудника Израильского Политехнического Института (Технион) физика-теоретика Александра Кацмана модифицировал технологию ПЭО, введя в электролит аморфные наночастицы кремнезёма (диоксида кремния SiO2). Многочисленные эксперименты в обычных условиях окружающей среды показали, что частицы с размерами от 20 до 40 нм при ПЭО превращаются в сверхплотную (на 60% плотнее кварца) модификацию кремнезёма – стишовит – и фиксируются в оксидном слое. Стишовит был открыт в 1961 году академиком РАН Сергеем Михайловичем Стишовым, в честь которого и получил своё название. Уникальность стишовита состоит в том, что он формируется только в условиях сверхвысоких давлений (80–120 тыс. атмосфер) и температур, выше 500 ºС. Содержащие стишовит породы находятся на недоступных для человека глубинах Земли в несколько сотен километров и редко встречаются на её поверхности в метеоритных и вулканических кратерах. Высокая твёрдость минерала (до 9,5 единиц по минералогической шкале Мооса, что чуть ниже твёрдости алмаза – 10 по шкале Мооса) делает его перспективным для создания твёрдых материалов и покрытий.
– Известно, что многие керамические частицы, попадая в электролит, могут адсорбировать электроны на своей поверхности и, таким образом, заряжаются отрицательно. Эти заряженные частицы попадают в парогазовые пузырьки (ПГП), образование которых в микропоровых каналах предшествует зажиганию и горению микродуговых разрядов при ПЭО. Электрическое поле может разогнать заряженные частицы в таких пузырьках до очень больших скоростей, в несколько раз превышающих скорость звука (до 1000 м/с и более). Столкновение быстродвижущихся заряженных наночастиц с поверхностью более твёрдого оксидного слоя приводит к самым разным эффектам. При неупругом (или частично упругом) столкновении кинетическая энергия частиц преобразуется в энергию деформации сжатия, нагревания частицы и/или в кинетическую энергию отскочившей частицы, обеспечивая различные сценарии взаимодействия в зависимости от размера частицы, – поясняет ведущий научный сотрудник Техниона Александр Кацман.
Разработанная модель позволяет прогнозировать значительное увеличение эффективности процесса ПЭО в присутствии наночастиц в электролите, изменение структуры и состава керамического слоя, улучшение защитных и механических свойств «покрытий». При обработке алюминиево-кремниевого сплава добавка всего 3 грамм наночастиц на литр электролита повышает износостойкость образующегося керамического слоя в 1,5 раза, термическое сопротивление в 4 раза, толщину – более чем в 1,5 раза.
– Размер частиц данного типа имеет определяющее значение для сценария их взаимодействия с поверхностью оксидного слоя, – подчёркивает руководитель проекта главный научный сотрудник ТГУ Михаил Криштал. – Поскольку в электролит невозможно ввести частицы строго определённого размера, в действительности одновременно добавляются разные по величине частицы в определённом диапазоне размеров. Поэтому одновременно могут реализоваться сразу несколько сценариев их взаимодействия – от упругого отскока обратно в электролит до превращения в фазы высокого давления, такие как стишовит, или даже расплавления и химического взаимодействия с металлом основы. Все эти сценарии реализуются при размере наночастиц от 10 до 100 нм. Стоит отметить, что с частицами большего размера такие интересные эффекты недостижимы. Более того, микрочастицы внедряются в керамический слой при ПЭО совсем по другому механизму – просто осаждаясь на поверхность в результате электрофореза. Ударный сценарий появления наночастиц стишовита очень похож на сценарий космической катастрофы – к подобным эффектам приводит мощный удар метеорита о землю. Только вместо гравитации наночастицы разгоняются электрическим полем. Само по себе ПЭО с точки зрения физики представляет собой циклический процесс, при котором последовательно реализуются самые разные физические механизмы – от формирования парогазовой фазы до микродугового разряда и его гашения. Внедрение наночастиц превращает такой процесс в ещё более сложный, гибридный, добавляя новые механизмы и эффекты, позволяющие, в частности, контролировать длительность горения дуги и таким образом увеличивать производительность всего процесса ПЭО. Одновременно работает и физика плазмы, и физика высокого давления в наномасштабе, и электрохимия.
Впервые учёные из Тольяттинского государственного университета обнаружили стишовит в керамическом слое, формируемом на поверхности алюминиевого сплава при ПЭО с добавками аморфных наночастиц, ещё в 2014 году. Однако потребовалось почти 8 лет, чтобы устойчиво воспроизвести и экспериментально доказать этот результат, а также создать теорию, адекватно объясняющую его и предсказывающую другие эффекты взаимодействия наночастиц с оксидным слоем, формируемым при ПЭО.
– Результат был крайне неожиданным и даже несколько пугающим, так как до нас такие эффекты никто в литературе не описывал. Открыть новую фазу в материале или переход в неё известного вещества – большая удача. И хотя мы были относительными новичками в этой области, мой научный руководитель профессор Михаил Михайлович Криштал поверил в этот результат и ухватился за него, как никто другой понимая его важность, новизну и уникальность. Мы опубликовали работу в Докладах Академии наук. Этот результат также стал частью моей кандидатской диссертации, – рассказывает ведущий научный сотрудник ТГУ, кандидат технических наук Антон Полунин. – С тех пор мы работали как над повторением выявленного эффекта, изучением его границ, так и, главное, над разработкой теоретической базы, модели, которая объясняла бы выявленный феномен, позволяла прогнозировать его возникновение и управлять им. И наконец нам это удалось.
Разработанная теория показывает, что физические свойства частиц, так же, как и их размер, играют решающую роль в сценарии взаимодействия наночастиц с керамическим слоем. В предыдущей публикации международного коллектива учёных представлены результаты исследований эффектов, связанных с добавками в электролит наночастиц карбида титана. Они, в отличие от аморфных частиц кремнезёма, твёрже получаемого оксидного слоя. Поэтому при определённом размере для них характерно химически инертное взаимодействие со слоем, при котором они его просто пробивают, как наноснаряды, внедряясь в слой на глубину, соизмеримую с их размером. Этот эффект также объясняется в рамках разработанной теории.
Исследования выполнены при поддержке Российского научного фонда и Министерства науки и высшего образования РФ (госзадание на научные исследования) и будут опубликованы 15 июля 2022 года в журнале Surface and Coatings Technology. Журнал публикует всего 18 % поступающих в редакцию научных работ. Сам факт новой публикации указывает на то, что наука может и должна оставаться вне политики, а геополитическая ситуация далеко не всегда влияет на эффективность взаимодействия учёных в рамках фронтирных научных исследований и публикационную политику ведущих журналов.

Контактное лицо: Ольга Колпашникова
Компания: Тольяттинский государственный университет
Добавлен: 09:06, 09.06.2022 Количество просмотров: 286
Страна: Россия


ТГУ поможет ТОАЗу за три недели, ТГУ, 14:15, 10.10.2025, Россия423
Грант в 500 000 рублей получила на реализацию академической мобильности аспирант кафедры «Химическая технология и ресурсосбережение» Тольяттинского госуниверситета Мария Богданова.


Научный коллектив АГАУ стал лауреатом премии Алтайского края в области науки и техники, ФГБОУ ВО "Алтайский государственный аграрный университет", 11:23, 03.10.2025, Россия850
На этой неделе издан Указ Губернатора Алтайского края о присуждении премий Алтайского края в области науки и техники в 2025 году.


Импортозамещение на практике: в преддверии марафона Знание.Первые школьникам и студентам показали, как производят материалы для самолетов и атомной отрасли, Общество "Знание", 14:26, 02.10.2025, Россия223
Накануне главного просветительского события страны стартовала серия экскурсий по уникальным объектам атомной промышленности. В рамках этого проекта школьники и студенты посетили в Республике Татарстан производство углеродного волокна «Алабуга-Волокно», где узнали, почему так важны композитные материалы для технологического суверенитета страны и насколько сложно создать высокотехнологичное производство с нуля.


Разработка ТГУ делает растворимые имплантаты безопасными, ТГУ, 14:26, 02.10.2025, Россия308
Учёные ТГУ создали установку, предназначенную для более точной оценки коррозионной стойкости и усталостной долговечности биорезорбируемых магниевых сплавов.


Ученый Алтайского ГАУ принял участие в Международном Форуме «Сибирь в стратегическом цивилизационном повороте: глобальное и региональное измерения», ФГБОУ ВО "Алтайский государственный аграрный университет", 12:54, 02.10.2025, Россия143
В Новосибирске завершил работу Международный форум «Сибирь в стратегическом цивилизационном повороте: глобальное и региональное измерения».


ТГУ готов выполнять государственные оборонные заказы, ТГУ, 22:31, 01.10.2025, Россия255
В Тольяттинском госуниверситете проведён очередной ресертификационный аудит системы менеджмента качества.


Накануне марафона Знание.Первые школьники узнали, как в Ставропольском крае силу ветра преобразуют в энергию, Общество "Знание", 22:29, 01.10.2025, Россия235
В Ставропольском крае ребята узнали, как управляют силой ветра, увидели вблизи 150-метровые ветроэнергетические установки, а также побывали внутри одной из них.


Формула хрупкости и вязкости: ТГУ предскажет катастрофы, ТГУ, 22:11, 01.10.2025, Россия76
Исследование, опубликованное в старейшем научном журнале Philosophical Magazine, открывает путь к более точному контролю свойств материалов.


Алтайский ГАУ вошел в Российско-Кыргызский Консорциум аграрных вузов, ФГБОУ ВО "Алтайский государственный аграрный университет", 16:52, 01.10.2025, Россия86
В Бишкеке завершился II Кыргызско-Российский образовательный форум, участие в котором принял Алтайский государственный аграрный университет.


Молодежь России увидит, как ГК «Росатом» строит будущее атомной энергетики Турции, Общество "Знание", 16:49, 01.10.2025, Россия94
Накануне федерального просветительского марафона Знание.Первые, приуроченного к 80-летию российской атомной промышленности, госкорпорация «Росатом» и Общество «Знание» выпустят фильм о строительстве первой в Турции атомной электростанции – АЭС «Аккую».


Образовательный центр для будущих атомщиков, циклотрон и новейший программно-вычислительный комплекс «Волна» увидели школьники в Снежинске накануне марафона Знание.Первые, Общество "Знание", 16:48, 01.10.2025, Россия86
В преддверии федерального просветительского марафона Знание.Первые, посвященного 80-летию атомной промышленности страны, российские школьники побывали в городе Снежинске.


Здесь создают завтрашний день: школьники побывали на объектах Госкорпорации «Росатом» в наукограде Обнинска в преддверии марафона Знание.Первые, Общество "Знание", 16:48, 01.10.2025, Россия89
Школьники посетили город Обнинск в Калужской области – первый наукоград России, где увидели первую в мире АЭС и строящийся завод радиофармпрепаратов.


Перед марафоном Знание.Первые школьникам показали, как в России создают ядерные реакторы, Общество "Знание", 16:47, 01.10.2025, Россия85
Перед стартом главного просветительского события страны для школьников организовали экскурсии на ключевые объекты атомной промышленности.


Быстрые реакторы и чистая энергия –– в преддверии марафона Знание.Первые российские школьники и студенты побывали на Белоярской АЭС, Общество "Знание", 16:46, 01.10.2025, Россия145
Сколько электроэнергии вырабатывает Белоярская АЭС, в чем ее уникальность и каковы планы по ее развитию, узнали российские школьники и студенты в ходе экскурсии на атомную электростанцию.


В Алтайском ГАУ запущен Научный клуб Первых, ФГБОУ ВО "Алтайский государственный аграрный университет", 14:14, 01.10.2025, Россия121
На базе молодежной инженерной школы «Импульс» Алтайского государственного аграрного университета прошло первое занятие Научного клуба Первых, где студенты познакомились с основами 3D-печати.


  © 2003-2025 inthepress.ru