 |
Исследование ученых ЛЭТИ позволит повысить эффективность проектирования нейроморфных компьютеров
Сегодня нейросетевые алгоритмы практически достигли предела по эффективности в возможностях обучения вычислительных устройств выполнять самостоятельные действия. Поэтому исследовательские группы по всему миру ведут исследования и разработки новых типов систем искусственного интеллекта. В этой сфере в последние годы наиболее перспективным направлением являются нейроморфные вычисления, которые используют архитектуры нейронных сетей: по аналогии с биологическими нервными клетками мозга — нейронами. Они способны обмениваться информацией с тысячами других нейронов, а также одновременно и хранить, и обрабатывать информацию. В теории применение таких технологий позволит создать новый класс вычислительных устройств, обладающих высоким быстродействием и низкими энергозатратами. На деле же, для создания подобных компьютеров требуется разработка эффективной методологии проектирования устройств, соответствующей компонентной базы, математических моделей и программного обеспечения. «Мы уточнили по ряду параметров математическую модель для серийно производящегося мемристора - это наноразмерный электрический элемент, который используется при создании нейроморфных систем. Уже существующая модель описывала поведение устройства только в общих чертах, что сказывалось на точности проектирования, а значит в дальнейшем это могло повлиять на адекватность работы действующего на основе мемристоров устройства», – рассказывает ассистент кафедры САПР СПбГЭТУ «ЛЭТИ», младший научный сотрудник Молодежного НИИ Валерий Островский. Для проведения исследований ученые в лаборатории перспективной электроники и сенсорики произвели более сотни измерений различных характеристик (вольт-амперные характеристики, эффект квантования проводимости и проч.) мемристора. На основании собранных данных в исходную модель было предложено добавить хаотический генератор для воспроизведения межциклической вариативности резистивных переключений, связанной с реорганизацией проводящего канала внутри исследуемого устройства. Вторая модификация заключалась в точной настройке модели в соответствии со структурными и частотными характеристиками порогов переключения мемристора при малых токах, нацеленной на долговечное и энергоэффективное применение элемента. Используемый в экспериментах электрический элемент серийно производится в США. Устройство представляет собой многослойную гетероструктуру на основе халькогенидного стекла с примесью вольфрама в активном слое: (). «Ключевая задача нашего исследования состоит в том, чтобы связать воедино физические образцы мемристоров, моделей и созданных на их основе прототипов вычислительных устройств, причем так, чтобы все они работали. И математические модели в данном случае выступают “мостиком” на пути к созданию нейроморфных компьютеров будущего. Потому что гораздо проще и дешевле отработать все необходимые аспекты функционирования таких систем с помощью моделей, чем создавать множество физических прототипов, не все из которых гарантированно будут работоспособны», – поясняет Валерий Островский. Результаты исследования опубликованы в научном журнале Nanomaterials.
Контактное лицо: Дарья Бодак
Компания: СПбГЭТУ "ЛЭТИ"
Добавлен: 17:23, 02.07.2022
Количество просмотров: 430
Страна: Россия
Ученые АГАУ станут спикерами XIII Сибирской конференции сторонников технологии No-Till, ФГБОУ ВО "Алтайский государственный аграрный университет", 02:50, 19.02.2025, Россия73 |
19-20 февраля 2025 года в главном корпусе Алтайского государственного аграрного университета состоится ежегодная XIII Сибирская конференция сторонников технологии No-Till «Вектор на прибыль. Снижение себестоимости и оптимизация трудовых процессов», организатором которой выступает Клуб «Амиготерра». |
|
 |